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ABSTRACT 1 
2 

Snow can cause dangerous driving conditions by reducing the pavement friction and 3 

covering the road surface markings. Salt is widely used by highway maintenance managers 4 

in the U.S. for reducing the impact of snow or ice on traffic. To develop long-term plans 5 

especially for the next winter season, it is essential to know what are the factors affecting 6 

salt usage and to determine sufficient amount of salt needed in each depot location. This 7 

can be done by estimating statistically robust models for salt usage prediction. In this study, 8 

historical data regarding storm characteristics and salt usage of New Jersey Turnpike (NJT) 9 

and Golden State Parkway (GSP) are used to estimate those models. The linear models, the 10 

hierarchical linear (HL) models and the hierarchical linear models with varying dispersion 11 

(HLVD) are developed to predict the salt usage of these highways. Results show that 12 

districts with higher average snow depth, longer storm duration and lower average 13 

temperature are associated with greater salt usage. The HLVD models are found to have 14 

the best predictive performance by including random parameters to account for unobserved 15 

spatial heterogeneity and by including fixed effects in the dispersion term. In addition, by 16 

estimating case-specific dispersion based on storm characteristics, the HLVD models could 17 

be used appropriately to estimate the upper bounds of salt usage, which are not extremely 18 

large and could satisfy the salt demand in most cases. The findings of this paper can provide 19 

highway authorities with valuable insights into the use of statistical models for more 20 

efficient inventory management of salt and other maintenance materials.  21 

22 
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INTRODUCTION 1 
2 

Snow storms remain as one the most disrupting events to highway systems. Snow on roads 3 

can cause dangerous driving conditions by reducing the pavement friction and covering the 4 

road surface markings. Black ice, caused by the refreezing of melting snow on roads, is 5 

difficult to be detected while driving, and thus increases the risk of traffic accidents. Salt 6 

is generally used by highway maintenance managers in the U.S. for reducing the impact of 7 

snow or ice on traffic. Since salt lowers the freezing point of water it comes into contact 8 

with, scattering salt on roads can help prevent icing and accelerate the melting process of 9 

snow. Stromberg (1) states that an “estimated 22 million tons of salt are scattered on the 10 

roads of the U.S. annually-about 137 pounds of salt for every American.”  11 

Having enough salt stored in each depot location is of utmost importance before 12 

and during snowfalls. Sufficient salt should be replenished in advance so that the 13 

maintenance operations would not be delayed during the snow storm. One of the challenges 14 

faced by highway authorities is to determine the sufficient amount of salt needed in each 15 

maintenance district. Underestimation of salt usage could slow down the snow or ice 16 

clearing process and place drivers in danger. Conversely, overestimation of salt usage 17 

could increase the storage cost and leave insufficient space for other maintenance materials. 18 

Hence, in-depth understanding of the factors affecting salt usage and an appropriate method 19 

for salt usage estimation are necessary tasks for more efficient inventory management.  20 

This study proposes a statistically robust method to estimate the salt usage as a 21 

function of snow storm characteristics. Two tolled highways managed by New Jersey 22 

Turnpike Authority (NJTA), namely, New Jersey Turnpike (NJT) and Golden State 23 

Parkway (GSP) are selected as a case study. A web-based tool called WeatherEVANT 24 

(Real-time Weather related Event Visualization and ANalytics Tool) (2) is developed by 25 

the research team and it is being currently used by the NJTA maintenance department to 26 

assist the real-time management of traffic operations. WeatherEVANT extracts 27 

information from NJTA’s snow operations database, which is updated frequently by the 28 

operators during the snow storms, and summarizes data on its web-based interface 29 

integrated with Google Maps©. Historical and live information on salt usage and storm 30 

conditions can be extracted from WeatherEVANT for analysis. WeatherEVANT also 31 

provides various visualizations of this real-time data and can also automatically generate a 32 

variety of performance reports for the use by decision makers. Active users of 33 

WeatherEVANT vary from maintenance clerks to the upper management of the authority. 34 

This paper begins with introduction, literature review and data description. In the 35 

methodology section, novel models developed in the hierarchical framework are proposed 36 

to account for the unobserved heterogeneity of salt usage among different maintenance 37 

districts. The proposed models are used to predict the means and upper bounds of salt 38 

usage. This paper ends with summary and conclusions. 39 

40 

LITERATURE REVIEW 41 
42 

Emergency management in response to adverse weather events is gaining increasing 43 

attention recently (3-7). Efficient management of maintenance materials is one of the 44 

essential tasks. Salt is the most widely used material for road maintenance in winter. In 45 

common practice, two forms of salt are applied: rock salt and salt brine (usually a 23 46 
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percent salt solution, derived from rock salt) (8). Both forms have similar melting 1 

characteristics, while salt brine is typically more efficient (8).  2 

The action that removes snow or ice after the snowfalls is regarded as de-icing. 3 

Numerous studies were conducted to explore factors that affects effectiveness of salt in de-4 

icing process. Gerbino-Bevins (9) explored the performance of multiple de-icing materials 5 

under varied temperatures and road surfaces, and indicated that salt brine became less 6 

effective and eventually stopped working when temperature goes lower. Besides, with 7 

similar application rate of salt, melting speed of snow is typically faster on asphalt concrete 8 

than cement concrete. 9 

Besides deicing, anti-icing is another common action conducted before the 10 

occurrence of snowfalls in preparation for snow and ice. According to Cuelho and 11 

Harwood (10), anti-icing can reduce the efforts to clear snow from pavement. The 12 

performance of anti-icing is related to temperature and duration of snow event (11). Fuet 13 

al. (11) developed a statistical model based on the results of lab and field tests, and depicted 14 

that anti-icing became less effective when pavement temperature is below 14°F. They also 15 

pointed out that anti-icing should be favored in light snow events. 16 

Regarding the salt inventory management, Roelants and Muyldermans (12) 17 

developed a stock management system based on an (R-S) Inventory Policy, where R is 18 

reorder points and S stands for the target stock. Both parameters vary spatially and 19 

temporally. Based on (R-S) Policy, Ciaralloet al. (13) constructed a strategy that met local 20 

salt inventory guideline based on a weather regression model, and the developed approach 21 

was able to determine the amount of salt need and time to make the order. Shiet al. (14) 22 

discussed the decision making process of using chloride-based products for winter 23 

maintenance under asset management framework, which provides a new prospective for 24 

all stakeholders. 25 

Most of the previous studies focus on the effectiveness of de-icing/anti-icing 26 

materials under different situations, and the management of their inventory. Studies on salt 27 

usage prediction based on weather-related factors are rare. Ciaralloet al. (13) developed 28 

regression models to estimate the amount of salt needed at the city/county level, using 29 

predictors such as amount of snow, days of snow, and temperature. However, they assume 30 

a linear relationship between salt usage and its contributing factors, which may not result 31 

in reliable estimates under more complicated situations. This study aims to add to the 32 

literature by proposing a more robust method for salt usage prediction.  33 

There are also several studies (15-18) conducted in the area of inventory 34 

management of different types of commodities for intelligent transportation systems and 35 

emergency operations. One of the major problems in these studies is the lack of real-world 36 

data that can be used to calibrate and validate developed models. This paper is unique in 37 

that sense because it has extensive amount of salt usage data obtained from real world 38 

problems. 39 

40 

DATA DESCRIPTION 41 
42 

Maintenance activities along NJT and GSP are distributed to multiple districts. There are 43 

12 maintenance districts at NJT and 9 maintenance districts (composed of 15 sub-districts) 44 

at GSP as shown in Figure 1. Each district is responsible for the maintenance of the 45 

assigned roadway segments. The equipment for storm maintenance such as plow trucks 46 
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and salt spreaders is stationed and salt used in the storms is stored in the tanks at each 1 

maintenance district. Regarding the practical application and management, salt usage of 2 

each maintenance district during a storm is what we try to estimate.  3 

4 

New Jersey 

Turnpike (NJT) 

Golden State 

Parkway (GSP) 

5 
Figure 1 Maintenance districts at New Jersey Turnpike (NJT) and Golden State 6 

Parkway (GSP). (19) 7 

8 

WeatherEVANT’ was used to obtain historical salt usage by querying the database 9 

at the district or event levels. The salt usage of each maintenance district during each storm 10 

event was obtained. We also used WeatherEVANT to extracts storm characteristics 11 

including average temperature, average snow depth, and storm duration from a NJTA’s 12 

database called SPEAR. As shown in Figure 2, maintenance districts with lower average 13 

temperature, higher average snow depth and longer storm duration are associated with 14 

more salt usage. Salt usage and storm data from the 2011-2012, 2012-2013 and 2013-2014 15 

winter seasons (in-sample dataset) is used to develop salt usage models, and the data from 16 

the 2014-2015 winter season (out-of-sample dataset) is used for model validation. There 17 

are a total of 44 storm events during the study period. The description and descriptive 18 

statistics of variables are presented in Table 1. 19 
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1 
Figure 2 Factors affecting salt usage at New Jersey Turnpike (NJT) and Golden 2 

State Parkway (GSP).  3 
4 

5 

6 
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1 

Table 1 Descriptions and Descriptive Statistics of Key Variables for New Jersey 2 

Turnpike (NJT) and Golden State Parkway (GSP) 3 

Variable Description 

NJT  

(490 samples) 
GSP 

(618 samples) 

Mean S.D. Mean S.D. 

Salt usage The amount of salt used in a maintenance 

district during a storm event (ton) 
428.98 370.28 286.7 300.33 

Average 

temperature 
Average temperature in a maintenance 

district during a storm event (°F) 
29.74 5.47 30.6 5.68 

Minimum 

temperature 
Minimum temperature in a maintenance 

district during a storm event (°F) 
26.38 7.07 26.07 6.95 

Average 

snow depth 
Average snow depth in a maintenance 

district during a storm event (inch) 
1.34 1.94 1.22 1.85 

Maximum 

snow depth 
Maximum snow depth in a maintenance 

district during a storm event (inch) 
2.34 3.42 2.26 3.44 

Storm 

duration 
the lasting time of a storm (day) 2.02 0.54 2.06 0.53 

October 1 for storms occurring in October; 0 for 

others 
0.12 0.32 0.12 0.33 

November 1 for storms occurring in November; 0 for 

others 
0.04 0.19 0.04 0.20 

December 1 for storms occurring in December; 0 for 

others 
0.16 0.37 0.15 0.36 

January 1 for storms occurring in January; 0 for 

others 
0.27 0.44 0.25 0.43 

February 1 for storms occurring in February; 0 for 

others 
0.30 0.46 0.31 0.46 

March 1 for storms occurring in March; 0 for 

others 
0.12 0.32 0.12 0.33 

District Categorical variable which indicates 

maintenance district; 12 levels for NJT and 

15 levels for GSP 

- - - - 

4 

5 

METHODOLOGY 6 
7 

Model Specification 8 
9 

To estimate the salt usage, the linear model, the hierarchical linear (HL) model and the 10 

hierarchical linear model with varying dispersion (HLVD) are proposed, in this section. 11 

The specifications of those models are presented in the following subsections. It should be 12 

noted that salt usage models are developed for NJT and GSP separately, considering the 13 

heterogeneity between them. Ordinary least squares (OLS) method (20) is used to estimate 14 

the coefficients of the linear model. Extended quasi likelihood method (21) is used for the 15 

estimation of the HL and the HLVD models.  16 

17 
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Model 1: linear model 1 

The linear model is based on the assumption that salt usage is independent from each other. 2 

Its specification is given by equation (1):   3 

4 

0

1

log( )
P

ij p pij ij

p

y   


   (1) 5 

6 

where ijy  denote the amount of salt used during thi  storm event at thj   maintenance 7 

district. pijX are explanatory variables such as average temperature and average snow 8 

depth. p ( 0,1, ...,p P , P  is the number of explanatory variables) are the regression 9 

coefficients to be estimated. The error term ij  is assumed to follow a normal distribution 10 

with mean 0 and variance 
2

 . 11 

12 

Model 2: hierarchical linear (HL) model 13 

14 

The independence assumption of the linear model could be violated by possible spatial 15 

heterogeneity of salt usage data. The spatial heterogeneity can be attributed to district-16 

specific unobserved factors such as road surface area, road priority and traffic volume. 17 

Those unobserved factors can not only affect salt usage directly but also the effects of 18 

explanatory variables (e.g. average temperature and storm duration) on salt usage. To 19 

account for the potential heterogeneity across homogeneous groups, hierarchical models, 20 

which allows coefficients to vary across different groups, have be used in previous studies 21 

(22-25). The hierarchical modeling framework is used in this study due to its two 22 

advantages: 1) able to account for the spatial heterogeneity of salt usage across 23 

maintenance districts; and 2) able to make more reliable estimation when samples are not 24 

enough to develop a model for each maintenance district (26). The HL model can be 25 

specified as: 26 

0

1

log( )
P

ij j pj pij ij

p

y   


   (2) 27 

pj p j    (3) 28 

29 

pj ( 0,1, ...,p P , P  is the number of explanatory variables) are the random parameters 30 

to be estimated. Different from 
p  in equation (1), random parameters 

pj are allowed to 31 

vary across maintenance district as shown in equation (3). j  is a normally distributed term 32 

with mean 0 and variance 
2

 . The error term 
ij  is assumed to follow a normal distribution 33 

with mean 0 and variance 2

 . 34 

35 

Model 3: hierarchical linear model with varying dispersion (HLVD) 36 

Different from the previous linear model and the HL model, error term 
ij  in the HLVD 37 

model is assumed to follow a normal distribution with mean 0 and 2

ij , where the 38 
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dispersion (or residual variance) 2

ij  is allowed to vary across observations. In the HLVD 1 

model, fixed effects are included in the dispersion term: 2 

0

2

1

log( )
Q

qi ij

q

j qZ  


   (4) 3 

where 
qijZ  are the variables having effects on the dispersion 2

ij  during ith storm event at 4 

jth maintenance district. 
q ( 0,1, ...,q Q , Q  is the total number of variables affecting the 5 

dispersion) are the regression coefficients to be estimated. Equations (2)-(4) construct the 6 

HLVD model. 7 

8 

Model Assessment 9 
10 

R-squared and its modified version adjusted R-squared that consider the number of 11 

explanatory variables used are usually used to measure the goodness-of-fit of models (27). 12 

Additionally, another two measures, Mean Absolute Deviance (MAD) and Mean Squared 13 

Predictive Error (MSPE), are used to assess models’ predictive performance (22). MAD 14 

and MSPE are expressed as:  15 

,

1
ˆ

ij i

i

j

j

yMAD y
N 

 (10) 16 

2

,

1
ˆ )ij ij

i j

MSPE y y
N 

  (11) 17 

where ˆ
ijy  is the estimated amount of salt used during thi  storm event at thj  maintenance 18 

district, and N  is the number of samples. Models associated with less MAD and MSPE 19 

have better predictive performance. MAD/Mean ratio, which is the MAD divided by the 20 

mean of salt usage 
,

1
ij

i j

y
N 

 , is used to show the relative prediction errors.21 

22 

MODELING RESULTS 23 
24 

The linear models, HL models and HLVD models specified in the methodology section 25 

were used to estimate the salt usage at NJT and GSP separately. To conduct effective 26 

comparisons, all the explanatory variables included in the six models were kept the same. 27 

In the HL and HLVD models, only if the estimated standard deviation (SD) of a random 28 

parameter was significantly positive and the inclusion of this random parameter would lead 29 

to better predictive performance, the parameter was allowed to vary randomly across 30 

maintenance districts. Consequently, the intercepts and the coefficients of average 31 

temperature, average snow depth and storm duration in the HL and HLVD models were 32 

set to be random parameters. The data from the 2011-2012, 2012-2013 and 2013-2014 33 

winter seasons (in-sample) is used to calibrate the salt usage models, and the data from the 34 

2014-2015 (out-of-sample) winter season is used to assess model’s predictive performance. 35 

Models were compared using in-sample and out-of-sample testing, with results reported in 36 

Table 2. 37 

38 
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Table 2 Comparisons of Model Performance1 
NJT GSP 

Linear HL HLVD Linear HL HLVD 
R-squared 0.590 0.741 0.823 0.426 0.699 0.737 
Adjusted R-squared 0.570 0.729 0.814 0.403 0.687 0.727 
In-sample testing 

MAD 166.357 133.329 115.157 131.675 100.318 95.696 
MAD/Mean 0.388 0.311 0.268 0.459 0.350 0.334 
MSPE 56077 35400 24250 51643 27091 23646 

Out-of-sample testing 
MAD 258.812 215.550 196.353 181.340 129.316 127.366 
MAD/Mean 0.518 0.432 0.393 0.690 0.492 0.485 
MSPE 132967 85633 76892 84610 45429 40351 

2 

According to the R-squared and adjusted R-squared shown in Table 2, the HL 3 

models (for both NJT and GSP) show substantial improvement over the linear models in 4 

terms of goodness-of-fit by allowing the intercepts and the coefficients of the logarithm of 5 

average temperature, average snow depth and storm duration to vary across maintenance 6 

districts. The goodness-of-fit get further improved in the HLVD models (for both NJT and 7 

GSP) by allowing the dispersion 
2

ij  to be case-specific (can be estimated with average 8 

temperature, average snow depth and storm duration). In addition, the smallest values of 9 

MAD, MAD/Mean and MSPE of both in-sample testing and out-of-sample testing indicate 10 

that the HLVD models (for both NJT and GSP) have the best predictive performance.   11 

The estimation results of the linear, HL and HLVD models are shown in Table 3, 12 

Table 4 and Table 5, respectively. To test the significance of explanatory variables, a 13 

widely used statistic indicator p-value was used. Most coefficients of explanatory variables 14 

were found to be statistically significant at 95% level (p-values<0.05) except the 15 

categorical variable month in the models for GSP (i.e., Table 3b, Table 4b and Table 5b). 16 

Compared with the linear model for GSP (Table 3b), the significance of the variable month 17 

gets improved in the HL (Table 4b) and HLVD (Table 5b) models when average 18 

temperature, average snow depth and storm duration are included as random parameters. 19 

According to the coefficient estimates in Table 3 , Table 4 and Table 5, it is found that 20 

average snow depth and storm duration are positively correlated with salt usage, while 21 

average temperature is negatively correlated with salt usage. This finding is consistent 22 

with the patterns presented in Figure 2. The quantitative impacts of those variables can be 23 

interpreted. For example, in the Table 5a, the coefficient of the logarithm of average 24 

temperature is -0.2796, which indicates that 1% increase of average temperature would 25 

lead to 0.2796% decrease in salt usage. In the Table 5b, the coefficient of October is -26 

0.2469, implying that the salt usage in October is expected to be 21.88% (1-e-0.2469) less 27 

than the salt usage in other months. In addition, as shown in Table 5, the effects of variables 28 

average temperature, average snow depth and storm duration on dispersion are found to 29 

be statistically significant. The dispersions in the linear (Table 3) and HL (Table 4) models 30 

are constant, and the dispersions (0.6150 and 0.3884) of the HL models are smaller than 31 

the dispersions (0.8602 and 0.7266) of the linear models, since over-dispersion is partially 32 

accounted for by random parameters in the HL models.  33 
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Table 3 Estimation Results of the Linear Models 1 
2 

(a) New Jersey Turnpike (NJT) 3 

Estimate Std. Error t value p-value 

Intercept 7.9047 0.8215 9.6230 < 0.0001 

log(Average temperature) -0.6160 0.2361 -2.6090 0.0095 

log(Average snow depth) 0.2971 0.0240 12.3830 < 0.0001 

log(Storm duration) 0.3844 0.1901 2.0230 0.0439 

Month 

November -0.8263 0.2549 -3.2420 0.0013 

March -0.4358 0.1556 -2.8010 0.0054 

Others 0.0000 - - - 

Dispersion 
2

 0.8602 - - - 

4 

(b) Golden State Parkway (GSP) 5 

Estimate Std. Error t value p-value 

Intercept 6.9683 0.8424 8.2720 < 0.0001 

log(Average temperature) -0.5329 0.2417 -2.2050 0.0280 

log(Average snow depth) 0.2701 0.0197 13.7350 < 0.0001 

log(Storm duration) 0.7665 0.1431 5.3570 < 0.0001 

Month 

October -0.1564 0.1427 -1.0960 0.2740 

November -0.0964 0.2017 -0.4780 0.6330 

January -0.1300 0.1372 -0.9480 0.3440 

February -0.1415 0.1155 -1.2250 0.2210 

March -0.0842 0.1430 -0.5890 0.5570 

Others 0.0000 - - - 

Dispersion 
2

 0.7266 - - - 

6 

Table 4 Estimation Results of the HL Models 7 
8 

(a) New Jersey Turnpike (NJT) 9 
Estimate Std. Error t value p-value 

Intercept 8.1247 0.7581 10.7170 < 0.0001 

      SD of parameter distribution=0.0232 

log(Average temperature) -0.7051 0.2194 -3.2140 0.0014 

      SD of parameter distribution=0.0798 

log(Average snow depth) 0.2925 0.0353 8.2860 0.0000 

      SD of parameter distribution=0.0436 

log(Storm duration) 0.4085 0.1771 2.3070 0.0217 

      SD of parameter distribution=0.0160 

Month 

November -0.8383 0.2348 -3.5710 0.0004 

March -0.4217 0.1429 -2.9510 0.0034 

Others 0.0000 - - - 

Dispersion 
2

 0.6150 - - - 
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1 

(b) Golden State Parkway (GSP) 2 

Estimate Std. Error t-value p-value 

Intercept 6.7551 0.7355 9.1840 < 0.0001 

      SD of parameter distribution=0.0232 

log(Average temperature) -0.4825 0.2119 -2.2770 0.0234 

      SD of parameter distribution=0.0744 

log(Average snow depth) 0.2731 0.0276 9.9070 < 0.0001 

      SD of parameter distribution=0.0381 

log(Storm duration) 0.8458 0.1280 6.6080 < 0.0001 

      SD of parameter distribution=0.0238 

Month 

October -0.2469 0.1250 -1.9760 0.0489 

November -0.3054 0.1762 -1.7340 0.0838 

January -0.1564 0.1200 -1.3030 0.1935 

February -0.1473 0.1005 -1.4650 0.1437 

March -0.1383 0.1257 -1.1000 0.2722 

Others 0.0000 - - - 

Dispersion 
2

 0.3884 - - - 

3 

4 

Table 5 Estimation Results of the HLVD Models 5 
6 

(a) New Jersey Turnpike (NJT) 7 

Estimate Std. Error t-value p-value 

Intercept 6.3699 0.3097 20.5720 <0.0001 

      SD of parameter distribution=0.0361 

log(Average temperature) -0.2796 0.0870 -3.2140 0.0015 

      SD of parameter distribution=0.1079 

log(Average snow depth) 0.2820 0.0394 7.1570 < 0.0001 

      SD of parameter distribution=0.0471 

log(Storm duration) 0.8002 0.1452 5.5120 < 0.0001 

      SD of parameter distribution=0.0444 

Month 

      November -0.4920 0.1698 -2.8980 0.0040 

      March -0.4268 0.0997 -4.2790 <0.0001 

      Others 0.0000 - - - 

Dispersion Effects (link=log) 
      Intercept -10.4109 1.4498 -7.1809 <0.0001 
      log(Average temperature) 2.7833 0.4169 6.6762 <0.0001 
      log(Average snow depth) -0.3249 0.0397 -8.1839 <0.0001 
      log(Storm duration) -0.7204 0.3043 -2.3674 0.0090 

8 

9 
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1 

(b) Golden State Parkway (GSP) 2 

Estimate Std. Error t-value p-value 

Intercept 6.8874 0.6082 11.3250 <0.0001 

      SD of parameter distribution=0.0246 

log(Average temperature) -0.5449 0.1773 -3.0740 0.0023 

      SD of parameter distribution=0.0815 

log(Average snow depth) 0.2684 0.0280 9.5880 < 0.0001 

      SD of parameter distribution=0.0357 

log(Storm duration) 1.0012 0.1320 7.5870 < 0.0001 

      SD of parameter distribution=0.0241 

Month 

      October -0.2783 0.1181 -2.3570 0.0189 

      November -0.2222 0.1632 -1.3620 0.1740 

      January -0.2918 0.1170 -2.4940 0.0131 

      February -0.1709 0.0926 -1.8460 0.0658 

      March -0.1956 0.1151 -1.7000 0.0899 

      Others 0.0000 - - - 

Dispersion Effects (link=log) 
      Intercept -3.9839 1.3247 -3.0074 0.0013 

      log(Average temperature) 0.9567 0.3891 2.4588 0.0070 

      log(Average snow depth) -0.1274 0.0374 -3.4064 0.0003 

      log(Storm duration) -0.7994 0.2804 -2.8509 0.0022 

3 

As mentioned previously, intercepts and coefficients of variables average 4 

temperature, average snow depth and storm duration in the proposed HLVD (Table 5) 5 

models are not fixed but follow certain distributions across maintenance districts. For 6 

example, the coefficient of the logarithm of the average temperature in the HLVD model 7 

for NJT is assumed to follow a normal distribution with mean -0.2796 and standard 8 

deviation (SD) 0.1079 (see Table 5a). The distributions of all the random parameters in the 9 

HLVD models are depicted in Figure 3. It is found that the 95% confidence intervals (CI) 10 

of those random variables do not cover 0, indicating that in most cases, the effects of those 11 

random variables are unidirectional (either positive or negative). For instance, an increase 12 

in average snow depth would lead to greater salty usage in most of maintenance districts. 13 

Among all the random parameters, the coefficients of the logarithm of the average 14 

temperature have the greatest variation (SDs of parameter distribution are 0.1079 in Table 15 

5a and 0.0815 in Table 5b).  16 
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1 
2 

Figure 3 Probability densities and 95% confidence intervals (CI) 3 

of random parameters in the HLVD models. 4 
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PREDICTION OF THE UPPER BOUNDS OF SALT USAGE 1 
2 

To ensure that the salt stored is sufficient in most cases, determination of the upper bound 3 

of salt usage is of great interest. The HLVD models, which can provide case-specific 4 

estimation of salt usage mean and dispersion (residual variance), was used to predict the 5 

upper bounds of salt usage. An 100(1 )%  upper confidence bound of salt usage is 6 

iij jy z  , where z  is the z-score of a standard normal distribution, and ijy  and 
ij  can 7 

be estimated in equations (2) and (4), respectively. In this study, we choose 0.1   as an 8 

example to ensure that the estimated upper bound of salt usage is greater than the actual 9 

demand in 90% of the cases.  For comparison purpose, the linear models and the HL models 10 

were also used to estimate the salt usage upper bounds from the equation 
ijy z  , where 11 

  is constant for different cases. 12 

In Figure 4, the horizontal axis of each subplot denotes the upper bound of salt 13 

usage estimated from salt usage models, and the vertical axis represents the actual salt 14 

usage. In each subplot, the data points above the diagonal line are cases when estimated 15 

salt usage upper bound is smaller than the actual salt use, and the number of those cases 16 

and the total number of cases are labelled in the parentheses at the top-left corner. For 17 

example, in the subplot “NJT: In-sample” of Figure 4a, the estimated salt usage upper 18 

bound is smaller than the actual salt usage in 9 out of 333 cases.  19 

A good salt usage model should provide estimates of salt usage upper bounds which 20 

satisfy the demand of salt usage in most cases. However, as shown in Figure 4a, in the out-21 

of-sample testing, the salt usage upper bounds estimated by the linear models are less than 22 

the actual salt usage in as many as 50 cases out of 157 for NJT and 127 cases out of 227 23 

for GSP. In contrast, the salt usage upper bounds estimated by the HL models and the 24 

HLVD models could satisfy the demand in most cases for both in-sample and out-of-25 

sample testing. On the other hand, a good salt usage model should avoid extremely large 26 

estimates of salt usage upper bounds. In Figure 4a and Figure 4b, both the linear models 27 

and the HL models provide estimates of salt usage upper bounds greater than 3000 tons, 28 

while the maximum of salt usage recorded for one district during one storm is about 2000 29 

tons. However, as shown in Figure 4c, the HLVD models could prevent those extremely 30 

large estimates by adjusting the dispersion 2

ij  in specific cases according to the storm 31 

characteristics. 32 

33 

34 

35 
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 1 
(a) Linear models 2 

 3 
(b) HL models 4 



Xie, Ozbay, Zhu, Demiroluk, Yang and Nassif 

18 

1 
(c) HLVD models 2 

3 

Figure 4 Estimated salt usage upper bound versus actual salt usage. 4 
5 

6 

SUMMARY AND CONCLUSIONS 7 
8 

This study proposes novel salt usage prediction models which can account for the 9 

unobserved spatial heterogeneity and allow dispersion of residuals to vary. It can serve as 10 

a useful complement to the literature, since studies on salt usage prediction based on 11 

weather-related factors are rare. The proposed method can provide appropriate estimates 12 

of the means as well as the upper bounds of salt usage at the maintenance district level. 13 

New Jersey Turnpike (NJT) and Golden State Parkway (GSP) are selected as a case 14 

study. Historical data on salt usage and storm characteristics is extracted from 15 

WeatherEVANT (Real-time Weather related Event Visualization and ANalytics Tool) (2)  16 

developed by the research team. The data from the 2011-2012, 2012-2013 and 2013-2014 17 

winter seasons is used to estimate salt usage models, and the data from the 2014-2015 18 

winter season is used for model validation. The linear models, the hierarchical linear (HL) 19 

models and the hierarchical linear models with varying dispersion (HLVD) are developed 20 

to predict the salt usage at NJT and GSP separately. HL models show substantial 21 

improvement over the linear models in terms of both in-sample and out-of-sample 22 

predictive performance by including random parameters which can vary across 23 

maintenance districts. The predictive performance of the HLVD models gets further 24 

improved by including fixed effects in the dispersion term. Results show that districts with 25 

higher average snow depth, longer storm duration and lower average temperature are 26 
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associated with greater salt usage. In addition, the effects of variables average temperature, 1 

average snow depth and storm duration on dispersion are found to be statistically 2 

significant. The 95% confidence intervals of random variables included in the HLVD 3 

models do not cover 0, indicating that the effects of those random variables are 4 

unidirectional (either positive or negative) in most of the maintenance districts. Among all 5 

the random parameters, the coefficients of the logarithm of average temperature have the 6 

greatest variation.  7 

Compared with the linear models, both the HL models and the HLVD models could 8 

give estimates of the upper bounds of salt usage that could satisfy salt usage demand in 9 

most cases for both in-sample and out-of-sample testing. Moreover, it is found that the 10 

HLVD models could prevent extremely large estimates of the upper bounds of salt usage 11 

by estimating case-specific dispersion based on storm characteristics.  12 

The transferability of the proposed models can be tested once the data from other 13 

highways becomes available. It is likely that the proposed models couldn’t achieve the 14 

same prediction accuracy for other highways, since the relationship between salt usage and 15 

contributing factors are location-specific. The effects of variables such as average 16 

temperature and average snow depth can vary greatly when confronting totally different 17 

environments. It is highly recommended to re-estimate the HLVD models to capture the 18 

local characteristics of other highways. However, this study identifies variables affecting 19 

salt usage and identifies best model specification for this type of data.  Thus, other agencies 20 

can use these findings to estimate their site specific models without having to go all the 21 

steps we went through when estimating the models presented in the paper. 22 

The findings of this paper can provide highway authorities in-depth understanding 23 

of the factors affecting salt usage and a robust method for salt usage estimation. Material 24 

replenishment decisions in the future snow storms can be made based on the expected 25 

means and upper bounds of salt usage. For the future study, additional variables affecting 26 

salty usage will be collected to improve the model performance, such as the roadway 27 

length, number of lanes and pavement condition. Furthermore, the potential of developing 28 

hierarchical nonlinear models that have greater flexibility to accommodate the data for salt 29 

usage prediction could be explored, when additional data is collected in the future. For 30 

more applications, real-time information on storm conditions and salt usage can be 31 

leveraged to assist agencies in developing more active, efficient and cooperative strategies 32 

in inventory management.  33 
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